Salinity Effects on Potassium Accumulation and Transporters Expression in Grape (Vitis vinifera L.). Nayer Mohammadkhani1٭, Reza Heidari2 and Nasser Abbaspour2
Authors: not saved
Abstract:
Hydroponically grown ten grape genotypes (Vitis vinifera L.) were treated with different concentrations of NaCl. Chawga genotype accumulated K+ in its root and shoot even at high salinity. The correlation between Na+ and K+ concentrations in root and lamina of all genotypes was negative (P
similar resources
Effects of salinity on antioxidant system in ten grape genotypes. Nayer Mohammadkhani1 and Nasser Abbaspour2*
Salinity is an important environmental factor that limits plant growth and production. Grape is classified as salt sensitive plants. The object of this study was to evaluate effects of salinity on membrane lipid peroxidation, antioxidant components, and antioxidative enzymes activity in ten grape genotypes native to the regions around Urmia Salt Lake.Malondialdehyde content and protective enzym...
full textGrowth responses and aquaporin expression in grape genotypes under salinity. Nayer Mohammadkhani*, Reza Heidari, Nasser Abbaspour and Fatemeh Rahmani
The effects of salinity on growth, leaf area and water relations of two grape genotypes (Gharashani and Shirazi) were studied under 2-week salinity (25, 50 and 100 mM NaCl). Growth and fresh weights of all plant parts were significantly (p
full textExpression of related proteins and aquaporin genes in grape (Vitis vinifera L.) under salinity sress
Due to worldwide increasing of salinity, the identification of genes conferring tolerance to plants is important. The aim of this study was to investigate salinity effects on the expression of three genes-related to proteins and aquaporin in grape (Vitis vinifera L.). Based on screening study on 18 grape genotypes, H6 and Gharashani that showed lower decrease in water potential, leaf area, leaf...
full textThe ameliorative effect of silicon and potassium on drought stressed grape (Vitis vinifera L.) leaves
The effect of sodium silicate (Si) and potassium (K) were investigated on the major antioxidant enzyme activities in two different grapevine cultivars (Vitis vinifera L., cvs Yezandai and Malinger Ramfi) under drought stress. The traits included superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate...
full textGenetic structure and differentiation in cultivated grape, Vitis vinifera L.
222 cultivated (Vitis vinifera) and 22 wild (V. vinifera ssp. sylvestris) grape accessions were analysed for genetic diversity and differentiation at eight microsatellite loci. A total of 94 alleles were detected, with extensive polymorphism among the accessions. Multivariate relationships among accessions revealed 16 genetic groups structured into three clusters, supporting the classical eco-g...
full textPotassium in the Grape (Vitis vinifera L.) Berry: Transport and Function
K+ is the most abundant cation in the grape berry. Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and postulate on the potential role of K+ in berry sugar accumulation, berry water relations, cellular growth, disease resistance, abiotic stress tolerance and mitigating senescence. By integrating information from several dif...
full textMy Resources
Journal title
volume 5 issue 4
pages 1483- 1494
publication date 2015-08-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023